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Progress Report an Rleerch on 5R 1 - 7 ~ t

Optinal Diteuac and Inference In Reliability

by

Michael N. Katehakis 1  Lynn Kuo Iand, H. Robbins 2

The main results obtained during the period 5/84 to 6/86 are on the

following:

I) Sequential Allocation Problem..

We considered the general, discrete time, effort allocation problem known

as the Multi-Armed Bandit problem . This class of problem ws first

formulated by Robbins (1952), and it in an important sequential control

problem with a tractable solution. A simple version of it can be stated as

follows. There are N independent projects (e.g., statistical populations,

manufacturing machines, maintenance actions, etc.). The state of the l-th

project at time t is denoted by zi(t) and it belongs in a set of states Si

(which in the simplest casm is a countable set). At each point of tUse t =

0,1,... one can work on one project only and if the 1-th of them is selected

receives a reward R(t) =ri(zj(t)) and its state changes according to a known

Markovian transition rule Pi(xj(t)) (Lae., the probabilities P(xi(t+l) =y I

zi(t) = ) are known) while the states of all other projects remain unchanged.

The states of all projects are observable and the objective in to determine a

dynamic effort allocation rule w so as to minimise the expected total

discounted reward I tat=o OtR(t) I x(0)) , for som discomt factor Sin

(0,).

1 D1eprtmeat of Applied Mathanticoand SUNY at Stony Brook,
2 Deprtzisnt of 1'thmastical Statistics, Cousis University.
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Gittins and Jones (1974) (cd. Glttins (1979), Whittle (1960)) showed that this

general problem can be reduced to N one dimensional problems. Rach of the

latter problem involves a single project, and its solution is the dynamic

allocati ndex value for the current state of the project. At each point of

time an optimal policy for the original problem ts such that it allocates effort

to the project with the largest index value in the then current state. If the

present state of a project in z then the corresponding value of the index is

given by one of the following, equivalent, expressions:

(1) s(x) = sup UZ( ITi *tR( t) I X(O))]/(1 - 3(pT)]T t=o

(2) a(x) = iaf (M :supT(I( I T-1 t(t) + OeT I X(0))) N)

where, in (1) , and (2), ir is a stopping time associated with the process that

describes the evolution of the state of the project under consideration.

It is a difficult task to compute the Indices via relations (1) ad (2).

Subsequently, Katehakis and Velnott (1IM) obtained the following

characterization for the index:

(3) a(z) - fip(3 I tl(t) I x(O))]tzO

whrein (3) a ,is areturn Use tostatez(0) . In (3) a(z) ilathe value

of the problem in which at any point in time we have to decide whether to

continue using the project or to return it to its initial state (at tise cq ) and

start all over again

Charatersatiou (3) reduces the problem of computing zi~a) into a

standard and easy problem of dynamic programming.

Also, in latehakis and Velnott (1365) a simpler proof of the original

theorem of Gittins and Jones (and that of Whittle) was given.

In Katehakis and Deruan (13S0k) the characterisation (3) in used to compute
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optimal policies in the context of a sequential clinical trials problem.

1U) opi~ Ihiutmace PaiUcigs

We consider a system of known structure that is composed of N compo-

nents and in maintained by R repairmen, where R is loss than N

Component functioning and repair times are random variables with known

distributions. The problem i to characterise dynamic maintenance policies;

I.e., rules for choosing to which failed components repairmen are assigned,

that yield a maximum value to a system measure of performance such as the

expected discounted system operation time and the average expected system

operation time.

Under appropriate assumptions, at any time the status of all components is

given by a vector ; z (xl,.. N) with xi =1 or 0 If the i-th component

i functioning or failed. Similarly, the state of the system i given by the

structure function # , where #(&) z 1 or 0 f the system is functioning

or fiIed when component status is I .

In Katehakis and Derman (195.) (see also, Katehakis (1980)) we considered

systems that are composd of highly reliable components. We extended work

done in Smith (19781) by providing a formulation of the general problem along

the lines of Markovian Decision Theory. Systems composed of highly reliable

components are modeled by assuming that the filure rate for the i-th

component is of the form ppi , I ' I 4 N , for some scalar p ) 0 . Thus, for

small values of p all components are highly reliable. Asymptotic power

series expansions of the expected discounted nonfunctioning time Dw(ZA)

are obtained; I.e.,

where P denotes the discount rate. For small values of p optimal policies

3
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were determined by minimizing the leading coefficients of the above power

Nerieas. It was shown that there exists an interval (O,p8) with the property

that If it contains the failure rates of all component., then the asymptotically

optimal policy under consideration is optimal. Recursive formulas for

computing the coefficients Mk) (3;) were obtained and were used to derive

partial characterizations of asymptotically optimal polie.s.

Finally, the explicit form of asypuptotically optimal policies for systems of

specific structure such s for the series-parallel (for R b 2) and a system

composed of paralel subsystems connected in series (for R - 1) were given.

M) Npirial Rea and Predtin.

Let f(.1) be a given parametric family ot probability density functions

with respect to sone a-flnite measure I& such that

(4) J Xf(XI@)4(x) - I for all 0 .

jet (O,X,Y), (Oi.,XiYj), isl,2,... , be i.i.d. rendm vectors such that 0 ha

some (unknown) distribution function G , while conditionally on 0 , X and

Y are Independent with respective probability density functions f(x0) and

f(yI)0) , where X is some constant. Finally, let u(z) be a given function

dictated by practical considorations.

Lot us consider three problems:

B.rflom 1 .latimate the -dn- quantity

,n u(Xi)Oj

by some function of Xl,...,Xn

Pm . Predict the random quantity

.n I u(Xj)Y!

by some function of XI...,Xn and X , when X is known (e.S., X - 1).

4
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Prolem1U.When X is unknown estimate it by some function of

1.... $n and Y!l,...,Y.* , %tere z* u(Xj)Yj

One way of solving them. problems is to try to find a function v(x) such

that

(5) f v(x)f(xIO)dp(x) * J u(x)f(x@)dp(x) for all *

and then to define

(6) =Z (j

From (5) it follow that irrespective of the the nature of the distribution

function a of 0

(7) 3n=3 , 1VSU; 3 1 ZV3 *

so that Sn can be estimated by V* , 3; by )kVn when x. is Iwosm, and

umkow A can be stimated by 8 JV* . The asymtotic distributions of these

estimators have been obtained, and aupttic confidence intervals for So

S; , and X have been fowd.

We have found solution of the basic equation (2) for smay of the

most coen permetric fmsilies, and have established the optimality of the

corespndming tmu, v eat lasters in some cases. ?1we practical imortance of

these resuts Is indicated in the proposal for future work.

IV) URM Immric Lim 16700 NsUMatlom In Quntal MOONEY.

An experimenter intends to test the strength of a material by applying

shocks at different levels to groups of components. The response to a shock

is assumed to be dichotomus: either damaged or not. We observe that k=

(kl,...,kL) components am damaged when a = (nj...nL) components are

tested at stress levels L : (tl...,tL) respectively (t1 ( t2 ( ... ( L)

The tolerance distribution in defined by F(t) ::probability of damage at

stress level t

5
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In Kuo L. (1986) a nonparametric linear Baye estimator for F is

developed, where the prior is assumed to be Ferguson' Dirichlet process

(1973); we have studied its asymptotic properties and have given numerical

comparisons for some cases.
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